Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Heliyon ; 10(1): e23671, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38187300

Background and aims: Fatty acid oxidation disorders (FAODs) are a group of autosomal recessive metabolic diseases included in many newborn screening (NBS) programs, but the incidence and disease spectrum vary widely between ethnic groups. We aimed to elucidate the incidence, disease spectrum, and genetic features of FAODs in a southern Chinese population. Materials and methods: The FAODs screening results of 643,606 newborns from 2014 to 2022 were analyzed. Results: Ninety-two patients were eventually diagnosed with FAODs, of which 61 were PCD, 20 were MADD, 5 were SCADD, 4 were VLCADD, and 2 were CPT-IAD. The overall incidence of FAODs was 1:6996 (95 % CI: 1:5814-1:8772) newborns. All PCD patients had low C0 levels during NBS, while nine patients (14.8 %) had normal C0 levels during the recall review. All but one MADD patients had elevated C8, C10, and C12 levels during NBS, while eight patients (40 %) had normal acylcarnitine levels during the recall review. The most frequent SLC22A5 variant was c.760C > T (p.R254*) with an allele frequency of 29.51 %, followed by c.51C > G (p.F17L) (17.21 %) and c.1400C > G (p.S467C) (16.39 %). The most frequent ETFDH variant was c.250G > A (p.A84T) with an allelic frequency of 47.5 %, followed by c.524G > A (R175H) (12.5 %), c.998A > G (p.Y333C) (12.5 %), and c.1657T > C (p.Y553H) (7.5 %). Conclusion: The prevalence, disease spectrum, and genetic characteristics of FAODs in a southern Chinese population were clarified. PCD was the most common FAOD, followed by MADD. Hotspot variants were found in SLC22A5 and ETFDH genes, while the remaining FAODs showed great molecular heterogeneity. Incorporating second-tier genetic screening is critical for FAODs.

2.
Clin Chim Acta ; 552: 117617, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37890575

BACKGROUND: Neonatal intrahepatic cholestasis due to citrin deficiency (NICCD) is an autosomal recessive disorder caused by SLC25A13 genetic mutations. We retrospectively analyzed 26 Chinese infants with NICCD (years 2014-2022) in Quanzhou City. METHODS: The plasma citrulline (CIT) concentration analyzed by tandem mass spectrometry (MS/MS), biochemical parameters and molecular analysis results are presented. RESULTS: Twelve genotypes were discovered. The relationship between the CIT concentration and genotype is uncertain. In total, 8 mutations were detected, with 4 variations, c.851_854delGTAT, c.615 + 5G > A, c.1638_1660dup and IVS16ins3kb, constituting the high-frequency mutations. Specifically, we demonstrated 2 patients with NICCD combined with another inborn errors of metabolism (IEM). Patient No. 22 possessed compound heterozygous mutations of c.615 + 5G > A and c.790G > A in the SLC25A13 gene accompanied by compound heterozygous variations of c.C259T and c.A155G in the PTS gene. Additionally, Patient No. 26 carried c.51C > G and c.760C > T in the SLC22A5 gene as well as c.615 + 5G > A and IVS16ins3kb in the SLC25A13 gene. CONCLUSIONS: We report a case of the simultaneous occurrence of primary carnitine deficiency (PCD) and NICCD.


Cholestasis, Intrahepatic , Cholestasis , Citrullinemia , Infant, Newborn, Diseases , Organic Anion Transporters , Humans , Infant , Infant, Newborn , Calcium-Binding Proteins/genetics , China , Cholestasis, Intrahepatic/genetics , Citrullinemia/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Organic Anion Transporters/genetics , Retrospective Studies , Solute Carrier Family 22 Member 5/genetics , Tandem Mass Spectrometry
3.
J Pediatr Endocrinol Metab ; 37(2): 163-169, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38158618

OBJECTIVES: Newborn screening (NBS) for primary carnitine deficiency (PCD) exhibits suboptimal performance. This study proposes a strategy to enhance the efficacy of second-tier genetic screening by adjusting the cutoff value for free carnitine (C0). METHODS: Between January 2021 and December 2022, we screened 119,898 neonates for inborn metabolic disorders. Neonates with C0 levels below 12 µmol/L were randomly selected for second-tier genetic screening, employing a novel matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay. RESULTS: In total, 2,515 neonates with C0 <12 µmol/L underwent further screening, including 206 neonates with C0 <8.5 µmol/L and 320 neonates with 8.5G, accounting for 25 % (7/28) of allelic frequencies. CONCLUSIONS: A novel MALDI-TOF MS assay targeting 21 SLC22A5 variants in a Chinese population was successfully established. This assay exhibits a high detection and diagnostic rate, making it suitable for population-based genetic screening. Combined genetic screening is recommended to enhance the efficiency of PCD-NBS.


Cardiomyopathies , Carnitine/deficiency , Genetic Testing , Hyperammonemia , Muscular Diseases , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Solute Carrier Family 22 Member 5/genetics , Mutation , Tandem Mass Spectrometry
4.
Clin Chim Acta ; 535: 13-18, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35952926

BACKGROUND AND AIMS: Hyperphenylalaninemia (HPA) is the most common congenital amino acid metabolism-related defect, but its incidence differs substantially between northern and southern China. We aimed to elucidate the incidence, proportion, and genetic features of HPA in a southern Chinese population. MATERIALS AND METHODS: We analyzed the HPA screening results for 580,460 newborns from 2014 to 2021. RESULTS: Of the 296 newborns who tested HPA positive, 56 were diagnosed with HPA, including 47 with phenylalanine hydroxylase deficiency and nine with tetrahydrobiopterin deficiency (BH4D). HPA incidence was estimated to be 1:10,365 newborns. All patients had elevated Phe and Phe/Tyr levels. Thirty-three PAH variants and five PTS variants were detected in HPA patients; 80.6 % PAH variants and 100 % PTS variants were classified as pathogenic or likely pathogenic. In silico tools predicted the remaining variants to be damaging. PAH variants clustered in exons 3, 5, 7, 11, and 12 and PTS variants clustered in exons 2 and 5. The most common PAH variants were c.158G > A (p.R53H, 22.3 %) and c.721C > T (p.R241C, 14.9 %). The most common PTS variants were c.155A > G (p.N52S, 50.0 %) and c.259C > T (p.P87S, 33.3 %). CONCLUSION: Newborn screening is an effective method for early detection of HPA, but differential diagnosis of BH4D is necessary.


Biopterins , East Asian People , Neonatal Screening , Phenylalanine Hydroxylase , Phenylketonurias , Humans , Infant, Newborn , Biopterins/deficiency , Biopterins/genetics , China/epidemiology , Diagnosis, Differential , East Asian People/genetics , Exons , Mutation , Neonatal Screening/methods , Phenylalanine Hydroxylase/deficiency , Phenylalanine Hydroxylase/genetics , Phenylketonurias/diagnosis , Phenylketonurias/epidemiology , Phenylketonurias/genetics
6.
Orphanet J Rare Dis ; 16(1): 503, 2021 12 04.
Article En | MEDLINE | ID: mdl-34863234

BACKGROUND: Primary carnitine deficiency (PCD) is an autosomal recessive disorder of carnitine transportation that leads to impaired fatty acid oxidation. Large-scale studies on newborn screening (NBS) for PCD are limited. This study aimed to investigate the biochemical and genetic characteristics of patients with PCD detected through NBS. RESULTS: A total of 548 247 newborns were screened for PCD between January 2014 and June 2021; 1714 newborns with low free carnitine (C0) levels were called back and 49 patients were diagnosed with PCD. The latest incidence rate in Quanzhou, China, was estimated to be 1 in 11 189 newborns. NBS results showed that the 49 patients had varying degrees of decreased C0 levels, whereas seven patients exhibited normal C0 levels during the recall review. All patients harbored biallelic pathogenic variants of the SLC22A5 gene. Nineteen distinct SLC22A5 variants were detected in these 49 patients, and most of the detected variants were clustered in exons 1, 4, and 7. The top eight variants had an allele frequency of 86.73%. The most common variant was c.760C > T (p.R254*) with an allele frequency of 31.63%, followed by c.51C > G (p.F17L) (17.35%) and c.1400C > G (p.S467C) (16.33%). The C0 level of patients with the N/N genotype was significantly lower than that of the M/M group. The C0 levels of patients with genotypes of R254*/R254* and R254*/F17L were far lower than those of patients with the R254*/S467C genotype. CONCLUSIONS: This study presented more than 500,000 NBS data with the latest incidence of 1:11 189 in the Quanzhou area. The SLC22A5 variant spectrum in the selected southern Chinese population has been updated. Patients with null variants were associated with low C0 levels. Combining NBS with genetic testing is critical to improve screening efficiency because patients with PCD may have normal C0 levels during NBS and recall review.


Hyperammonemia , Muscular Diseases , Cardiomyopathies , Carnitine/deficiency , Humans , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Infant, Newborn , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Mutation/genetics , Neonatal Screening , Solute Carrier Family 22 Member 5/genetics
7.
Materials (Basel) ; 14(23)2021 Nov 27.
Article En | MEDLINE | ID: mdl-34885416

The poor formability of high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting is an important factor restricting its further development and application. Currently, there are no reports on the secondary forgeability of aluminum matrix composites of original squeeze casting, although some papers on its first forgeability are published. The secondary forgeability is very important for most metals. This study aims to investigate the secondary forgeability of aluminum matrix composites. In this study, the secondary upsetting experiments of 20 vol% SiCw + Al18B4O33w/2024Al composites, treated by the original squeeze casting and extrusion, were carried out. The first upsetting deformation is close to the forming limit, the secondary upsetting deformation under the same deformation conditions was carried out to investigate the secondary forgeability. The experimental results show that, unlike aluminum alloys, the 20 vol% SiCw + Al18B4O33w/2024Al composites at the original squeeze casting and extrusion states have no secondary forgeability due to the whisker rotating and breaking during the secondary upsetting. The high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting cannot be formed by the multiple-forging method since the cavities and cracks caused by whisker fracture continue to expand during secondary processing, which leads to further extension of macroscopic cracks.

8.
Infect Drug Resist ; 14: 2925-2932, 2021.
Article En | MEDLINE | ID: mdl-34349527

BACKGROUND: The purpose of this study was to evaluate the prevalence of mobile colistin resistance genes (mcr) in Gram-negative bacteria and to analyze the molecular characteristics of mcr-1 positive Salmonella typhimurium strain 75 and Escherichia coli strain 107 from the Quanzhou Women's and Children's Hospital in China. METHODS: The genes mcr-1 through mcr-9 were screened via multiplex PCR. Antibiotic susceptibility was detected using a GN11 card with the VITEK-2 compact automated system. Whole genomes were sequenced using PacBio's single molecule real-time (SMRT) technology. RESULTS: In this study, mcr-1 was detected in only four strains, with a positivity rate of 0.65% (4/616). All the four strains were resistant to more than three different kinds of antibiotics. The mcr-1 positive S. typhimurium strain 75 harbored IncHI2 plasmid, which carried mcr-1 gene, while the mcr-1 positive E. coli strain 107 contained four plasmids including one mcr-1 harboring IncHI2 plasmid, one IncFII plasmid and two IncI1-I (Alpha) plasmids. Mobile elements carrying mcr-1 in the 75_plasmid and 107_plasmid-1 were located in the IS1086(ISApl1)-IS30A(ISApl1)-mcr-1-hp and IS1086(ISApl1)-mcr-1-hp regions, respectively. Tn6010 carrying drug efflux pump genes was found in 75_plasmid, while cn_31611_IS26 carrying multi-drug resistance (MDR) genes were found in 107_plasmid-1. CONCLUSION: This study found that mcr-1 was prevalent at a low frequency in the Quanzhou Women's and Children's Hospital. A similar genetic pattern of mcr-1 transmission was found in both E. coli and S. typhimurium.

9.
Orphanet J Rare Dis ; 16(1): 339, 2021 08 03.
Article En | MEDLINE | ID: mdl-34344405

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable disorder affecting cerebral organic acid metabolism caused by a defective glutaryl-CoA dehydrogenase (GCDH) gene. GA1 diagnosis reports following newborn screening (NBS) are scarce in the Chinese population. This study aimed to assess the acylcarnitine profiles and genetic characteristics of patients with GA1 identified through NBS. RESULTS: From January 2014 to September 2020, 517,484 newborns were screened by tandem mass spectrometry, 102 newborns with elevated glutarylcarnitine (C5DC) levels were called back. Thirteen patients were diagnosed with GA1, including 11 neonatal GA1 and two maternal GA1 patients. The incidence of GA1 in the Quanzhou region was estimated at 1 in 47,044 newborns. The initial NBS results showed that all but one of the patients had moderate to markedly increased C5DC levels. Notably, one neonatal patient with low free carnitine (C0) level suggest primary carnitine deficiency (PCD) but was ultimately diagnosed as GA1. Nine neonatal GA1 patients underwent urinary organic acid analyses: eight had elevated GA and 3HGA levels, and one was reported to be within the normal range. Ten distinct GCDH variants were identified. Eight were previously reported, and two were newly identified. In silico prediction tools and protein modeling analyses suggested that the newly identified variants were potentially pathogenic. The most common variant was c.1244-2 A>C, which had an allelic frequency of 54.55% (12/22), followed by c.1261G>A (p.Ala421Thr) at 9.09% (2/22). CONCLUSIONS: Neonatal GA1 patients with increased C5DC levels can be identified through NBS. Maternal GA1 patients can also be detected using NBS due to the low C0 levels in their infants. Few neonatal GA1 patients may have atypical acylcarnitine profiles that are easy to miss during NBS; therefore, multigene panel testing should be performed in newborns with low C0 levels. This study indicates that the GCDH variant spectra were heterogeneous in this southern Chinese cohort.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant , Infant, Newborn , Neonatal Screening
10.
Clin Chim Acta ; 512: 166-171, 2021 Jan.
Article En | MEDLINE | ID: mdl-33181153

BACKGROUND AND AIMS: Primary carnitine deficiency (PCD) is an autosomal recessive disease caused by functional defects in the carnitine transporter OCTN2 due to mutations in SLC22A5. Here, we aimed to understand the incidence, clinical, biochemical, and molecular features of PCD in Quanzhou, China. MATERIALS AND METHODS: Newborn screening (NBS) was performed through tandem mass spectrometry (MS/MS) to detect genetic metabolic diseases. Next-generation sequencing was used to detect SLC22A5 mutations in patients with suspected PCD. RESULTS: From 364,545 newborns screened, 36 were diagnosed with PCD, in addition to five mothers. The incidence of PCD in children in the Quanzhou area was 1:10126. Eighteen SLC22A5 variants were found, with five novel ones. The most prevalent variant in neonatal and maternal patients was c.760C > T (p.R254*). Twenty-five neonatal patients received L-carnitine supplementation; however, one patient discontinued treatment and sudden death occurred. One sibling presented repeated fatigue, hypoglycemia, and coma, but the symptoms disappeared after treatment. Two mothers with PCD claimed to feel weak and easily fatigued. CONCLUSION: The incidence of PCD is relatively high in the Quanzhou area. Five novel variants were found, broadening the mutation spectrum of SLC22A5. NBS is effective in identifying PCD, and sudden death may be prevented with timely treatment.


Cardiomyopathies , Neonatal Screening , Carnitine/deficiency , Child , China/epidemiology , Female , Humans , Hyperammonemia , Infant, Newborn , Muscular Diseases , Mutation , Solute Carrier Family 22 Member 5/genetics , Tandem Mass Spectrometry
11.
BMC Pediatr ; 20(1): 478, 2020 10 13.
Article En | MEDLINE | ID: mdl-33050909

BACKGROUND: Primary carnitine deficiency (PCD) is an autosomal recessive disorder affecting the carnitine cycle and resulting in defective fatty acid oxidation. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the main causes of inherited neonatal cholestasis. Both PCD and NICCD are included in the current expanded newborn screening (NBS) targets. CASE PRESENTATION: Targeted exome sequencing was performed on a Chinese proband, and Sanger sequencing was utilised to validate the detected mutations. The patient who was initially suspected to have PCD based on the NBS results presented with neonatal intrahepatic cholestasis and ventricular septal defect. Further investigations not only confirmed PCD but also revealed the presence of NICCD. Four distinct mutations were detected, including c.51C > G (p.F17L) and c.760C > T (p.R254X) in SLC22A5 as well as c.615 + 5G > A and IVS16ins3kb in SLC25A13. CONCLUSIONS: This is the first reported case of PCD and NICCD occurring in the same patient. The dual disorders in a newborn broaden our understanding of inherited metabolic diseases. Thus, this study highlighted the importance of further genetic testing in patients presenting with unusual metabolic screening findings.


Carnitine , Cholestasis, Intrahepatic , Citrullinemia , Cardiomyopathies , Carnitine/deficiency , China , Cholestasis, Intrahepatic/etiology , Cholestasis, Intrahepatic/genetics , Citrullinemia/complications , Humans , Hyperammonemia , Infant, Newborn , Mitochondrial Membrane Transport Proteins/genetics , Muscular Diseases , Mutation , Solute Carrier Family 22 Member 5
12.
BMC Med Genet ; 21(1): 155, 2020 07 29.
Article En | MEDLINE | ID: mdl-32727382

BACKGROUND: Holocarboxylase synthetase (HLCS) deficiency is a rare inborn disorder of biotin metabolism, which results in defects in several biotin-dependent carboxylases and presents with metabolic ketoacidosis and skin lesions. CASE PRESENTATION: In this paper, we report a Chinese Han pedigree with HLCS deficiency diagnosed by using next-generation sequencing and validated with Sanger sequencing of the HLCS and BTD genes. The Chinese proband carries the common missense mutation c.1522C > T (p.Arg508Trp) in exon 9 of the HLCS gene, which generates an increased Km value for biotin. A novel frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15) in exon 6 of the HLCS gene is predicted to be deleterious through PROVEAN and MutationTaster. A novel heterozygous mutation, c.638_642delAACAC (p.His213Profs*4), in the BTD gene is also identified. CONCLUSIONS: The Chinese proband carries the reported Arg508Trp variant, the novel 2-bp frameshift mutation c.1006_1007delGA (p.Glu336Thrfs*15), which expands the mutational spectrum of the HLCS gene, and the novel heterozygous mutation c.638_642delAACAC (p.His213Profs*4), which expands the mutational spectrum of the BTD gene. Furthermore, reversible hearing damage is rarely reported in patients with HLCS deficiency, which deserves further discussion.


Asian People/genetics , Ethnicity/genetics , Holocarboxylase Synthetase Deficiency/genetics , Pedigree , Amino Acid Sequence , Base Sequence , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Female , Holocarboxylase Synthetase Deficiency/blood , Holocarboxylase Synthetase Deficiency/enzymology , Holocarboxylase Synthetase Deficiency/urine , Humans , Infant , Male , Metabolome , Mutation/genetics , Protein Domains
13.
Clin Chim Acta ; 510: 285-290, 2020 Nov.
Article En | MEDLINE | ID: mdl-32710939

BACKGROUND AND AIMS: Acyl-CoA dehydrogenase deficiencies are a group of mitochondrial fatty-acid oxidation disorders rarely reported in mainland China. We assessed the biochemical and genetic characteristics of patients with short- and very-long-chain-acyl-CoA dehydrogenase deficiencies (SCADD/VLCADD) discovered through newborn screening. MATERIALS AND METHODS: We investigated the effects of genetic variations on protein function using in silico prediction and structural modelling. RESULTS: Of 364,545 screened newborns, four were diagnosed with SCADD and four with VLCADD. SCADD and VLCADD incidences in our population were 1:91,136. All patients exhibited elevated C4 or C14:1 levels. Three SCADD patients had increased urinary ethylmalonic acid concentrations. Six ACADS and eight ACADVL variants were identified, with no hotspot variants, and five were unreported, including four missense variants and one splice site variant. ACADVL c.1434 + 2 T > C is a splice site variant that could affect splicing, leading to exon 14 skipping. In silico tools predicted the missense variants as pathogenic. Structural modelling confirmed that the missense variants may affect quaternary structures, causing protein instability. CONCLUSIONS: Our findings expanded the ACADS and ACADVL mutational spectra. The combination of in silico prediction and structural modelling can improve our understanding of the pathogenicity of unreported genetic variants, providing an explanation for variant assessment.


Acyl-CoA Dehydrogenase, Long-Chain , Lipid Metabolism, Inborn Errors , Carnitine , China , Congenital Bone Marrow Failure Syndromes , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Mitochondrial Diseases , Muscular Diseases , Neonatal Screening
14.
Clin Chim Acta ; 509: 25-29, 2020 Oct.
Article En | MEDLINE | ID: mdl-32505769

BACKGROUND: Isovaleric acidemia (IVA) is a rare autosomal recessive disorder of leucine metabolism caused by a defective isovaleryl-CoA dehydrogenase (IVD) gene. Reports of IVA diagnoses following newborn screening (NBS) in the Chinese population are few. METHODS: We investigated the biochemical, clinical, and molecular profiles of 5 patients with IVA in China. The estimated incidence of IVA in Quanzhou, China is 1 in 1:84,469. RESULTS: Initial NBS revealed mild to markedly increased isovalerylcarnitine (C5) concentrations in all 5 patients, and differential diagnosis revealed increased urinary isovaleryglycine concentrations in 2 patients. One patient presented with acute neonatal symptoms, whereas the other 4 remained asymptomatic. Eight distinct IVD gene variants were identified. The most common variant was c.1208A > G (p.Y403C), with an allele frequency of 30%. Five variants were previously unreported, namely, c.499A > G (p.M167V), c.640A > G (p.T214A), c.740G > A (p.G247E), c.832G > C (p.V278L), and c.1195G > C (p.D399H). Different in silico prediction analyses suggested that these previously unreported missense variants are pathogenic. Protein modelling analyses also showed that these missense variants may cause structural damage and dysfunction in IVD. CONCLUSIONS: Patients with IVA may have C5 concentrations approaching the cut-off values, highlighting the need for stringent recall criteria and second-tier tests to improve screening performance.


Amino Acid Metabolism, Inborn Errors , Isovaleryl-CoA Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , China , Humans , Infant, Newborn , Isovaleryl-CoA Dehydrogenase/genetics , Mutation , Neonatal Screening
15.
J Food Sci ; 85(7): 2004-2009, 2020 Jul.
Article En | MEDLINE | ID: mdl-32529767

Pseudostellaria heterophylla is a very popular traditional Chinese medicine herb, also called "Taizishen." Discrimination of P. heterophylla from different regions is critical for ensuring the effectiveness of drug use, because the drug effects of P. heterophylla from different regions are diversity of each other. To discriminate P. heterophylla from different regions rapidly and effectively, a model extracted by competitive adaptive reweighted sampling (CARS) was established. Original spectra of P. heterophylla in wave number range of 10,000 to 4,000 cm-1 were acquired. Orthogonal partial least squares discriminant analysis (OPLS-DA) was also used to establish a suitable model. CARS was performed for extracting key wave number variables. We found that the near-infrared spectrum of a series of samples analyzed by Row-center-SG, CARS, and OPLS-DA can effectively distinguish the P. heterophylla from different regions, and the accuracy of OPLS-DA model is also satisfactory in terms of good discrimination rate. These results show that the Row-center-SG, CARS, and OPLS-DA model can be used to identify the P. heterophylla from different regions. PRACTICAL APPLICATION: According to our research results, we can draw a conclusion that our research results may be used to distinguish the traditional Chinese medicine from those from different places of origin and the powder with similar appearance.


Caryophyllales/chemistry , Spectroscopy, Near-Infrared/methods , China , Discriminant Analysis , Least-Squares Analysis , Powders/chemistry
16.
Mol Genet Genomic Med ; 8(7): e1301, 2020 07.
Article En | MEDLINE | ID: mdl-32410394

BACKGROUND: The urea cycle plays a key role in preventing the accumulation of toxic nitrogenous waste products, including two essential enzymes: ornithine transcarbamylase (OTC) and argininosuccinate lyase (ASL). Ornithine transcarbamylase deficiency (OTCD) results from mutations in the OTC. Meanwhile, argininosuccinate lyase deficiency (ASLD) is caused by mutations in the ASL. METHODS: Blood tandem mass spectrometric analysis and urea organic acidemia screening were performed on five Chinese cases, including three OTCD and two ASLD patients. Next-generation sequencing was then used to make a definite diagnosis, and the related variants were validated by Sanger sequencing. RESULTS: The five patients exhibited severe clinical symptoms, with abnormal biochemical analysis and amino acids profile. Genetic analysis revealed two variants [c.77G>A (p.Arg26Gln); c.116G>T (p.Gly39Val)] in the OTC, as well as two variants [c.1311T>G (p.Tyr437*); c.961T>A (p.Tyr321Asn)] in the ASL. Conservation analysis showed that the amino acids of the two novel mutations were highly conserved in different species and were predicted to be possibly damaging with several in silico prediction programs. 3D-modeling analysis indicated that the two novel missense variants might result in modest distortions of the OTC and ASL protein structures, respectively. CONCLUSIONS: Two novel variants expand the mutational spectrums of the OTC and ASL. All the results may contribute to a better understanding of the clinical course and genetic characteristics of patients with urea cycle disorders.


Argininosuccinate Lyase/genetics , Argininosuccinic Aciduria/genetics , Mutation , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase/genetics , Argininosuccinate Lyase/chemistry , Argininosuccinic Aciduria/pathology , Female , Humans , Infant , Male , Molecular Dynamics Simulation , Ornithine Carbamoyltransferase/chemistry , Ornithine Carbamoyltransferase Deficiency Disease/pathology , Pedigree , Protein Domains
17.
Front Genet ; 10: 802, 2019.
Article En | MEDLINE | ID: mdl-31555323

Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of impaired isoleucine catabolism caused by mutations in the ACADSB gene. There are limited SBCADD cases worldwide and to date no Chinese patients with SBCADD have been reported. The aim of this study was to investigate the biochemical, clinical information, and genotypes of twelve patients with SBCADD in China for the first time. The estimated incidence of SBCADD was 1 in 30,379 in Quanzhou, China. The initial newborn screening (NBS) results revealed that all patients showed slightly or moderately elevated C5 concentrations with C5/C2 and C5/C3 ratios in the reference range, which has the highest risk of being missed. All patients who underwent urinary organic acid analysis showed elevation of 2-methylburtyrylglycine in urine. All patients were asymptomatic at diagnosis, and had normal growth and development during follow-up. Eight different variants in the ACADSB gene, including five previously unreported variants were identified, namely c.596A > G (p.Tyr199Cys), c.653T > C (p.Leu218Pro), c.746del (p.Pro249Leufs*15), c.886G > T (p.Gly296*) and c.923G > A (p.Cys308Tyr). The most common variant was c.1165A > G (33.3%), followed by c.275C > G (20.8%). All previously unreported variants may cause structural damage and dysfunction of SBCAD, as predicted by bioinformatics analysis. Thus, our findings indicate that SBCADD may be more frequent in the Chinese population than previously thought and newborn screening, combined with genetic testing is important for timely diagnosis. Although the clinical course of Chinese patients with SBCADD is likely benign, longitudinal follow-up may be helpful to better understand the natural history of SBCADD.

18.
Clin Chim Acta ; 494: 106-111, 2019 Jul.
Article En | MEDLINE | ID: mdl-30904546

To evaluate the incidence, disease spectrum, and genetic characteristics of inherited metabolic disorders (IMDs) of newborns in Quanzhou area, China. We analyze the expanded newborn screening results of IMDs detected by tandem mass spectrometry (MS/MS) during 5 years. Suspected positive patients were diagnosed through next-generation sequencing and validated by Sanger sequencing. In addition, multiplex ligation-dependent probe amplification technology has also been applied to assist in diagnosis of diseases with deletion or duplication mutations. A total of 364,545 newborns were screened, 130 IMDs were identified yielding an incidence of 1:2804. In addition, 9 cases of maternal disorders were also identified by our MS/MS newborn screening program. There were 42 newborns with amino acid disorders (1:8680), 39 with organic acid disorders (1:9347), and 49 with fatty acid oxidation disorders (1:7440). Unlike other studies, our study indicated that fatty acid oxidation disorder has the highest proportion (37.7%), particularly primary carnitine deficiency (PCD) with incidence up to 1:10,126 was the most common disorder in the region. The recurrent mutations of relatively common diseases like PCD, phenylalanine hydroxylase deficiency, short-chain acyl-CoA dehydrogenase deficiency, citrin deficiency, glutaric acidemia type I, isobutyryl-CoA dehydrogenase deficiency, and multiple acyl-CoA dehydrogenase deficiency in this region were also clearly elucidated. Therefore, our data indicated that IMDs are never uncommon in Quanzhou, the disease spectrum and genetic backgrounds were clearly elucidated, contributing to the treatment and prenatal genetic counseling of these disorders in this region.


Asian People/genetics , Metabolic Diseases/genetics , Neonatal Screening , China , Female , Humans , Infant, Newborn , Male , Mutation , Tandem Mass Spectrometry
19.
Clin Chim Acta ; 487: 133-138, 2018 Dec.
Article En | MEDLINE | ID: mdl-30253142

Isobutyryl-CoA dehydrogenase deficiency (IBDHD) is a rare autosomal recessive metabolic disorder related to valine catabolism and results from variants in ACAD8. Here, we present the clinical, biochemical, and genotypes of seven patients with IBDHD in China for the first time. Five patients remained asymptomatic during follow-up, whereas one juvenile had speech delay and one newborn exhibited clinical symptoms. All patients showed remarkably increased concentrations of C4-aclycarnitine with elevated C4/C2 and C4/C3 ratios. In urine organic acid tests, only one patient presented with an increased concentration of isobutyrylglycine excretion. Genetic testing was performed to detect the causative variants. Five previously unreported variants, c.235C > G, c.286G > A, c.444G > T c.1092 + 1G > A, and c.1176G > T, and one known variant, c.1000C > T, in ACAD8 were identified. These previously unreported variants in ACAD8 were predicted to be disease-causing and the c.1092 + 1G > A variant was confirmed to cause skipping of exon 9 by reverse transcription PCR. The most common variant was c.286G > A, which showed an allelic frequency of 50% (7/14), and thus may be a prevalent variant among Chinese patients. Our results broaden the mutational spectrum of ACAD8 and improve the understanding of the clinical phenotype of IBDHD.


Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenases/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Computational Biology , High-Throughput Nucleotide Sequencing , Acyl-CoA Dehydrogenase/genetics , Acyl-CoA Dehydrogenase/metabolism , Acyl-CoA Dehydrogenases/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , China , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Mutation , Phenotype
20.
BMC Med Genet ; 19(1): 114, 2018 07 11.
Article En | MEDLINE | ID: mdl-29996803

BACKGROUND: Methylmalonic acidemia (MMA) is an autosomal recessive inherited disorder caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut- enzymatic subtype, respectively); a defect in the transport or synthesis of its cofactor, adenosyl-cobalamin (cblA, cblB, or cblD-MMA); or deficiency of the enzyme methylmalonyl-CoA epimerase. The cblA type of MMA is very rare in China. This study aimed to describe the biochemical, clinical, and genetic characteristics of two siblings in a Chinese family, suspected of having the cblA-type of MMA. METHODS: The Chinese family of Han ethnicity of two siblings with the cblA-type of MMA, was enrolled. Target-exome sequencing was performed for a panel of MMA-related genes to detect causative mutations. The influence of an identified missense variant on the protein's structure and function was analysed using SIFT, PolyPhen-2, PROVEAN, and MutationTaster software. Moreover, homology modelling of the human wild-type and mutant proteins was performed using SWISSMODEL to evaluate the variant. RESULTS: The proband was identified via newborn screening (NBS); whereas, her elder brother, who had not undergone expanded NBS, was diagnosed later through genetic family screening. The younger sibling exhibited abnormal biochemical manifestations, and the clinical performance was relatively good after treatment, while the older brother had a mild biochemical and clinical phenotype, mainly featuring poor academic performance. A novel, homozygous missense c.365T>C variant in exon 2 of their MMAA genes was identified using next-generation sequencing and validated by Sanger sequencing. Several different types of bioinformatics software predicted that the novel variant c.365T>C (p.L122P) was deleterious. Furthermore, three-dimensional crystal structure analysis revealed that replacement of Leu122 with Pro122 led to the loss of two intramolecular hydrogen bonds between the residue at position 122 and Leu188 and Ala119, resulting in instability of the MMAA protein structure. CONCLUSIONS: The two siblings suspected of having the cblA-type of MMA showed mild phenotypes during follow-up, and a novel, homozygous missense variant in their MMAA genes was identified. We believe that the clinical features of the two siblings were associated with the MMAA c.365T>C variant; however, further functional studies are warranted to confirm the variant's pathogenicity.


Amino Acid Metabolism, Inborn Errors/genetics , Asian People/genetics , Mitochondrial Membrane Transport Proteins/genetics , Amino Acid Sequence , Child , Female , Homozygote , Humans , Infant , Male , Mutation, Missense/genetics , Phenotype , Siblings
...